A CNDO STUDY OF NICOTINAMIDE AND 1-METHYL-1,4-DIHYDRONICOTINAMIDE*

J.Kuthan and L.Musil ${ }^{* *}$
Department of Organic Chemistry, Institute of Chemical Technology, 16628 Prague 6

The electronic structures of nicotinamide (I) and 1-methyl-1,4-dihydronicotinamide (II) have been studied by the standard CNDO/2 procedure. The coherence of calculated electron distribution and energetical characteristics with some physical and chemical properties of I and I is discussed.

Nicotinamide (I) and 1-methyl-1,4-dihydronicotinamide (II) are of interest due to their structural similarity to the pyridinoid parts of the NAD ${ }^{+}$-type coenzymes. The main aim of the reported EHT (refs ${ }^{1-3}$) and PCLLO (ref. ${ }^{4}$) calculations of I and $I I$ was the prediction of optimum conformations. Both semiempirical procedures mentioned predict a slightly twisted form $I a$ of I and the planar conformation $I I b$ of $I I$ to be energetically most preferable. This was assumed ${ }^{1-4}$ to be in excellent agreement with X-ray solid state diffraction data for I (ref. ${ }^{5}$) and 1-benzyl analogue of $I I$ (ref. ${ }^{6}$). However, little is known about conformations of I and similar dihydropyridine derivatives in solution ${ }^{7}$. The total electron distribution of I was studied by the Hückel method ${ }^{3,8}$. Unfortunately, this method exaggerates charge density localization in molecules ${ }^{9,10}$. A limited number of CNDO charge densities on carbon atoms of I have been reported recently ${ }^{11}$, in connection with NMR investigations of this compound. On the other hand, no data on electron distributions of I and $I I$ have been reported in the communication on the PCILO treatment ${ }^{4}$.

In this paper we wish to present the CNDO/2 calculations of I and $I I$. It is hoped that the electron distribution calculated by this procedure can be useful for discussing a number of biochemically interesting properties related to the pyridinoid fragments in NAD^{+}-type coenzymes ${ }^{8,12}$.

Calculations

The calculations of I and $I I$ were carried out by using standard CNDO/2 and MINDO/2 programmes on the IBM 7040 computer. The procedures reported by Pople, Santry and Segal ${ }^{13}$ and by Dewar and coworkers ${ }^{14}$ were followed, including definition by the authors of charge density Q_{A} on the atomic centre A and Wiberg's formulation of bond indices $W_{A B}$ for a given A-B bond ${ }^{15}$.

[^0]Theoretical dipole moments were computed while taking into consideration their hybridization and charge components ${ }^{16}$. The CNDO/2 and MINDO/2 parameters of our calculations, using interatomic distances determined by X-ray diffraction ${ }^{5,6}$, are shown in Table I.

RESULTS AND DISCUSSION

In order to achieve the ,,optimum" electron distribution of a given molecule, attempts are usually made to optimize its geometry with respect to some degrees of freedom. Some complications arise here in connection with the finding ${ }^{17-19}$ that standard CNDO/2 procedure leads to total energy - torsion angle curves with arificial minima for such conjugated molecules as butadiene, glyoxal, biphenyl, $2,2^{\prime}$-difluorobiphenyl and benzaldehyde. Fortunately, we have found that the electron distribution characteristics of I are in general little sensitive to the rotation around angle α and, in the case of $I I$, the optimum α value is the same as that calculated by EHT and PCILO procedure ${ }^{4,20}$.

Electron energy. In agreement with the results of the foregoing semiempirical calculations ${ }^{1-4}$, we have decided to investigate at first the changes of the total electron energy $E_{\text {tot }}$ in dependence on the torsion angle α. As follows from Fig. 1 the curve $E_{\text {tot }}=f(\alpha)$ exhibits the expected artificial minimum at 84° which differs both from those obtained by EHT and PCILO calculations ${ }^{2-4}$ and from the experimental solid state value 24° (ref. ${ }^{5}$). On the other hand, the $E_{\text {tot }}$ curve of $I I$ displays a similar minimum at 180° (Fig. 2), analogously to other calculations ${ }^{4,20}$, and its value agrees well with the solid state angle 176° for 1 -benzyl-1,4-dihydronicotinamide ${ }^{6}$.

In the mentioned papers ${ }^{17-19}$ an acceptable reason of the CNDO/2 failure for certain conjugated molecules has not been suggested. It has been stated ${ }^{17}$, however, that the method "underestimates the conjugation effect and thus leads to conformations which are twisted too much". The $E_{\text {tot }}$ curve of $I I$ (Fig. 2) clearly demonstrates that such a generalization does not seem to be fully justified. An additional example in favour of this assumption is given in Fig. 2 which shows also the $E_{\text {tot }}$ curve for 1,4--dihydronicotinic acid (IIIa $\rightarrow I I I b$), a possible intermediate in the biosynthesis of nicotine ${ }^{21}$. It is evident that the $\mathrm{CNDO} / 2$ calculation of $I I I$ yields a maximum near 90° and the lowest minimum at 180°, similarly as that of $I I$. Therefore, the CNDO/2 treatment can hardly be considered to produce only incorrect results for dihydropyridine derivatives. In connection with this it appears to be of interest to follow changes of the nuclear repulsion term

$$
\begin{equation*}
E_{\mathrm{rep}}=E_{\mathrm{tot}}-E_{\mathrm{e}}=\sum_{\mathrm{A}} \sum_{\mathrm{B}} Z_{\mathrm{A}} Z_{\mathrm{B}} R_{\mathrm{AB}}^{-1} \tag{1}
\end{equation*}
$$

where R_{AB} is the distance between the atomic centres A and B resp., $Z_{\mathrm{A}}, Z_{\mathrm{B}}$ are the corresponding effective nuclear charges, and E_{e} may be called the electronic term.

Table I
Data Used in the CNDO/2 Calculation

Atom	$-0.5\left(I_{s}+A_{s}\right)$	$-0.5\left(I_{p}+A_{p}\right)$	$-\beta_{\mathrm{A}}^{0}$	$\boldsymbol{\xi}$
H	7.176	-	9	1.2
C	14.051	5.572	21	1.625
N	19.316	7.275	25	1.95
O	25.390	9.111	31	2.275

Figs 1 and 2 show that, in contradistinction to $E_{\text {rep }}$ curves, the E_{e} curves of I and $I I$ exhibit maxima near 90°. Consequently, one may conclude that relative underestimation of the E_{e} magnitude might cause the typical lack of analogical maxima on $E_{\text {tot }}$ curves in cases where the torsion angle corresponds to rotation of aromatic and heteroaromatic rings ${ }^{17-19}$ or of very polar bonds, as in glyoxal ${ }^{17}$. Less polar olefinic systems such as butadiene (ref. ${ }^{17,19}$) or dihydropyridine derivatives are displaying more or less distinct $E_{t 01}$ curve maxima for their twisted conformers (see ref. ${ }^{17-19}$ and Fig. 2). This conclusion seems to be in good accordance with the assumption of Gropen and Seip ${ }^{17}$, since the E_{e} term also includes electronic conjugation effects.

$\left.1 a 10=0^{\circ}\right)$

$$
/ / c\left(1, x=180^{\circ}\right)
$$

$\operatorname{Ha}(a=1)^{0}$

IIIa $\left(\alpha=0^{\circ}\right)$
IIIb $\left(x=180^{\circ}\right)$

To check whether the charge-point approximation (1) of $E_{\text {rep }}$ within the CNDO/2 treatment might cause a failure in the conformational considerations, we have also calculated the MINDO/2 version of the $E_{\text {tot }}$ curve for I. Fig. 1 demonstrates that such a modification does not lead to qualitatively different results as compared to those achieved by the standard CNDO/2 procedure. The rotational barriers of I and $I I$ calculated by different semiempirical methods are compared in Table II.

Two additional degrees of freedom, i.e. valence and dihedral angles ω and φ, were included in our CNDO/2 calculations of $I I b$ in order to investigate the probability of boat-like conformations IIc. We have found that any small deviation out of the dihydropyridine ring plane $\left(|\varphi|>0^{\circ}\right)$ as well as the rehybridization of heterocyclic nitrogen $\left(|\omega|>0^{\circ}\right)$ results in an increase of the $E_{t o t}$ energy. For example, the space configurations of the IIc type with $\varphi=10^{\circ}, \omega=0^{\circ}$ and $\varphi=15^{\circ}, \omega=5^{\circ}$ correspond to the $E_{\text {tot }}$ energy increase of $0.67 \mathrm{kcal} / \mathrm{mol}$ or $1.15 \mathrm{kcal} / \mathrm{mol}$ respectively, being in good agreement with the fact ${ }^{6}$ that the heterocyclic ring of 1-benzyl-1,4-dihydronicotinamide in the solid state seems to be planar within limits of the accuracy of the

Fig. 1
Angular Dependence of Energy for Nicotinamide (I)

Measured relatively to the lowest minimum.

Fig. 2
Angular Dependence of Energy in 1-Methyl--1,4-dihydronicotinamide (II) and 1,4-Dihydronicotinic Acid (III)

Measured relatively to the lowest minimum.

X-ray measurement. It is noteworthy, however, that the above-mentioned $E_{\text {tot }}$ consumption is very small and analogical EHT treatment ${ }^{20}$ prefers the boat-like conformation IIc with energy gain which does not exceed $0.8 \mathrm{kcal} / \mathrm{mol}$.

Table II

Comparison of Calculated Rotational Barriers ($\mathrm{kcal} / \mathrm{mol}$) for Compounds I and I

Method	I^{a}	$\\| I^{a}$
EHT	$4 \cdot 0^{6}$ (3)	$6 \cdot 4^{b}(20)$
	$2 \cdot 7^{c}(2)$	
CNDO/2	$3 \cdot 2^{d}$	$6 \cdot 0^{\text {d }}$
PCILO	$2 \cdot 6$ (4)	$4 \cdot 1$ (4)

${ }^{a}$ Taken from the literature given in parenthesis. ${ }^{b} H_{i j}=0.875 S_{i j}\left(H_{i i}+H_{j j}\right) .{ }^{c} H_{i j}=-1.5$. . $S_{i j}\left(H_{i i} H_{j j}\right)^{1 / 2}$. ${ }^{d}$ This paper.

Table III
Charge Densities and Bond Indices of $I a\left(\alpha=30^{\circ}\right), I I b\left(\alpha=180^{\circ}\right)$ and $I I c\left(\varphi=10^{\circ}, \omega=0^{\circ}\right)$

Atom	$Q_{\text {A }}$			Bond	$W_{\text {AB }}$		
	Ia	IIb	IIc		Ia	$11 b$	Hc
N_{1}	-0.1434	-0.1175	-0.1205	$\mathrm{N}_{1}-\mathrm{C}_{2}$	1.4315	$1 \cdot 1035$	1.0992
C_{2}	$+0.0970$	$+0.1517$	$+0.1537$	$\mathrm{C}_{2}-\mathrm{C}_{3}$	1.4180	1.7629	1.7697
C_{3}	-0.0638	-0.1221	-0.1209	$\mathrm{C}_{3}-\mathrm{C}_{4}$	1.4031	1.0141	1.0117
C_{4}	$+0.0556$	$+0.0490$	$+0.0484$	$\mathrm{C}_{4}-\mathrm{C}_{5}$	1.4404	1.0260	1.0256
C_{5}	-0.0338	-0.0557	-0.0533	$\mathrm{C}_{5}-\mathrm{C}_{6}$	1.4571	1.9183	1.9199
C_{6}	$+0.1057$	+0.0932	$+0.0922$	$\mathrm{C}_{6}-\mathrm{N}_{1}$	1.4300	1.0259	1.0232
C_{7}	$+0.3581$	$+0.3600$	+0.3605	$\mathrm{N}_{1}-\mathrm{CH}_{3}$	-	1.0222	1.0219
O_{8}	-0.3540	-0.4014	-0.4002	$\mathrm{C}_{3}-\mathrm{C}_{7}$	0.9972	1.0396	1.0377
N_{9}	-0.2428	-0.2434	-0.2435	$\mathrm{C}_{7}-\mathrm{O}_{8}$	1.7394	1.6598	$1 \cdot 6614$
$\mathrm{C}\left(\mathrm{H}_{3}\right)$	-	$+0.0902$	$+0.0908$	$\mathrm{C}_{7}-\mathrm{N}_{9}$	$1 \cdot 1579$	$1 \cdot 1758$	$1 \cdot 1762$
H_{2}	-0.0149	$+0.0099$	$+0.0076$	$\mathrm{C}_{2}-\mathrm{H}_{2}$	0.9570	0.9566	0.9555
H_{4}	$+0.0073$	-0.0182	-0.0167	$\mathrm{C}_{4}-\mathrm{H}_{4}$	0.9589	0.9457	0.9428
H_{4},	-	-0.0182	-0.0191	$\mathrm{C}_{4}-\mathrm{H}_{4}$.	-	0.9457	0.9498
H_{5}	$+0.0068$	$+0.0020$	$+0.0032$	$\mathrm{C}_{5}-\mathrm{H}_{5}$	0.9601	0.9544	0.9548
H_{6}	-0.0157	-0.0034	-0.0035	$\mathrm{C}_{6}-\mathrm{H}_{6}$	0.9542	0.9584	0.9584
H_{9}	$+0.1158$	+0.1159	$+0.1163$	$\mathrm{N}_{9}-\mathrm{H}_{9}$	0.9560	0.9600	0.9598
H_{9}.	$+0.1224$	$+0 \cdot 1234$	$+0.1237$	$\mathrm{N}_{9}-\mathrm{H}_{9}$.	0.9505	0.9574	0.9574
$\mathrm{H}\left(\mathrm{CH}_{2}\right)$	-	$-0.0041^{\text {a }}$	$-0.0065^{\text {a }}$	$\mathrm{H}-\mathrm{C}\left(\mathrm{H}_{2}\right)$	--	$0.9798^{\text {a }}$	$0.9774^{\text {a }}$

${ }^{a}$ Averaged values were slightly dependent on the conformation of the 1 -methyl group.

Table IV
Comparison of Dipole Moments μ (in D) for I and $I I$
Method $\mu(I)^{a} \mu(I I)^{b}$

Experiment	3.37 ± 0.05	4.00 ± 0.05
CNDO $/ 2$	$1.70-5.33^{c}$	$5.83-3.72^{c}$
EHT	$4.56-13.53$	$14.00-10.20$

${ }^{a}$ Ref. $.^{3} .{ }^{b}$ Ref. ${ }^{20} .{ }^{c}$ This paper.

Electron distribution. Calculated electron distribution characteristics, $Q_{\text {A }}$ and W_{AB}, of twisted form $I a$ as well as of planar and boat-like forms $I I b, c$ are presented in Table III. The numbering of individual atomic centres is given in Fig. 3. The confrontation of the calculated and experimental dipole moments of I and $I I$ given in Table IV suggests that the physical reality is satisfactorily depicted by the CNDO/2 electron distribution. Likewise, the trend in changes of Q_{C} values and the carbon-13 chemical shifts in the NMR spectra of I (refs ${ }^{11,20,22}$) remains the same, except for an insignificant exchange of the Q_{C} values for position 3 and 5 . Comparison of data in Table III shows that, contrary to I, the heterocyclic ring of $I I$ exhibits considerable $\mathrm{C}_{2}-\mathrm{C}_{3}$ and $\mathrm{C}_{5}-\mathrm{C}_{6}$ double bond localization. This becomes apparent from the high W_{CC} values for the bonds mentioned, when compared to others, e.g. $\mathrm{N}_{1}-\mathrm{C}_{2}, \mathrm{C}_{3}-\mathrm{C}_{4}$, $\mathrm{C}_{4}-\mathrm{C}_{5}$ and $\mathrm{N}_{1}-\mathrm{C}_{6}$. This is in accordance with the higher frequency of the $\mathrm{C}=\mathrm{C}$ stretching vibration maxima $\left(1625 \mathrm{~cm}^{-1}\right)$ for $I I$ relative to $I\left(1594 \mathrm{~cm}^{-1}\right.$, ref. $\left.{ }^{20}\right)$. On the other hand, the double bond character of the carbonyl group $\mathrm{C}_{7}-\mathrm{C}_{8}$ of $I I$ is lowered $\left(W_{\mathrm{CO}}=1.6598\right)$ with respect to that of $I\left(W_{\mathrm{CO}}=1.7394\right)$, in agreement with the difference in the corresponding stretching vibrational modes, which were found ${ }^{20}$ to be $1694 \mathrm{~cm}^{-1}$ for I and $1683 \mathrm{~cm}^{-1}$ for $I I$ under the same measurement conditions. The total electron charge Q_{N} at N_{1} of heteroaromatic I is more negative than that of hetero-olefinic $I I$, which is in harmony with generally smaller basicity of the nitrogen in 1,4-dihydropyridine derivatives ${ }^{7}$.

Fig. 3
Numbering of Individual Centres for Nicotinamide (I) and 1-Methyl-1,4-dihydronicotinamide (II)

The CNDO/2 charge densities Q_{A} as well as the Wiberg's indices W_{AB} show in general small sensitivity to rotation around angle α and their changes are in most cases similar to analogical EHT population data ${ }^{3,20}$. Electron distribution characteristics of $I I$ are of interest in relation to biochemical reactivity. The fundamental process of the NADH action is the abstraction of one hydrogen atom at position 4 (ref. ${ }^{23}$), e.g. the splitting of one of $\mathrm{C}_{4}-\mathrm{H}$ bonds. In connection with our findings the ability of $I I$ to be effective in such a way might be interpreted such that, firstly, the centres H_{4} and H_{4}, possess the highest electron densities (1.0182) of all hydrogen atoms and can be thus considered as reducing agents; secondly, the bonds H_{4} -$-\mathrm{C}_{4}-\mathrm{H}_{4}$ ' possess the lowest value of Wiberg's indices ($W_{\mathrm{CH}}=0.9457$) and their cleavage ought to be then preferred. Thus, the results of $\mathrm{CNDO} / 2$ calculations consent to the knowledge about the mechanism of NADH reductions ${ }^{23}$.

Orbital symmetry. When comparing the calculated orbital configurations of I and $I I$, we have found that calculations of all planar forms $I a, b$ and $I I a, b$ result in the same number, e.g. five bonding MO's of the π-symmetry with respect to the heterocyclic ring plane. This is somewhat surprising for $I I a$ and $I I b$, since the tetrahedral atomic centre 4 is formally taken out of the conjugation. In fact, such a simplification would not apparently be correct description of the electronic structure of $I I$, due to neglection of the significant overlap between the antisymmetrical combination of $\mathrm{C}_{4}-\mathrm{H}_{4}$ and $\mathrm{C}_{4}-\mathrm{H}_{4}, \sigma$-MO's and of the p_{z}-AO's at C_{3} and C_{5} (Fig. 3) resulting in important hyperconjugation effect of the 4-methylene group. In fact, the corresponding MO is the HOMO of $I I b$ and for its LCAO expansion it holds that

$$
\begin{aligned}
\phi_{27} & =0.24 \mathrm{~s}\left(\mathrm{H}_{4}\right)-0.24 s\left(\mathrm{H}_{4}\right)+0.15 p_{z}\left(\mathrm{C}_{4}\right)-0.43 p_{z}\left(\mathrm{C}_{3}\right)- \\
& -0.34 p_{z}\left(\mathrm{C}_{5}\right)-0.22 p_{z}\left(\mathrm{C}_{2}\right)-0.18 p_{z}\left(\mathrm{C}_{6}\right)+0.58 p_{z}\left(\mathrm{~N}_{1}\right),
\end{aligned}
$$

where only the terms with $c_{i} \geqq 0 \cdot 15$ are shown, the index 27 denotes the order from the lowest MO ϕ_{1} and the numerical coefficients refer to z-axis AO direction components. A similar hyperconjugative effect has been ascertained for 1,4-cyclohexadiene ${ }^{24}$ and $1,3,5$-cycloheptatriene ${ }^{25}$. One may therefore assume that the pseudo-$-\pi$-orbital responsible for the reactivity of $I I$ in the sense of H_{4} or H_{4}, abstraction will be just the HOMO ϕ_{27}, in accordance with non-negligible magnitudes of expansion coefficients for AO's $s\left(\mathrm{H}_{4}\right), s\left(\mathrm{H}_{4}\right)$ and $p_{z}\left(\mathrm{C}_{4}\right)$ respectively, given above.

The authors wish to express their gratitude to Dr R. Zahradnik and to Dr P. Cärsky for the most valuable discussions.

REFERENCES

1. Kuthan J., Musil L., Skála V.: Z. Chem. 11, 390 (1971).
2. Long K. R., Goldstein J. H.: Theor. Chim. Acta 27, 75 (1972).
3. Kuthan J., Musil L., Skála V.: This Journal 37, 2933 (1972).
4. Coubeils J. L., Pullman B., Couriére Ph.: Biochem. Biophys. Res. Commun. 44, 1131 (1971).
5. Wright E. B., King G. S. D.: Acta Crystallogr. 7, 283 (1954).
6. Karle I. L.: Acta Crystallogr. 14, 497 (1961).
7. Eisner U., Kuthan J.: Chem. Rev. 72, 1 (1972).
8. Pullman B., Pullman A.: Quantum Biochemistry. Interscience, New York 1963.
9. Andrews P.: Theor. Chim. Acta 14, 261 (1969).
10. Streitwieser A., jr: Molecular Orbital Theory for Organic Chemists. Wiley, New York 1961.
11. Birdsall B., Feeney J., Partington P.: J. Chem. Soc. Perkin Trans. 2, 2145 (1973).
12. Pullman A.: Topics in Current Chemistry 31, 45 (1972).
13. Pople J. A., Santry D. P., Segal G. A.: J. Chem. Phys. 43, S 129 (1965).
14. Bodor N., Dewar M. J. S., Harget A., Haselbach E.: J. Amer. Chem. Soc. 92, 2854 (1970).
15. Wiberg K.: Tetrahedron 24, 1083 (1968).
16. Pople J. A., Gordon M.: J. Amer. Chem. Soc. 89, 4253 (1967).
17. Gropen O., Seip H. M.: Chem. Phys. Lett. 1/, 445 (1971).
18. Skancke P. N., Aanesland I.: Acta Chim. Scand. 26, 2614 (1972).
19. Perahia D., Pullman A.: Chem. Phys. Lett. 19, 73 (1973).
20. Musil L.: Thesis. Institute of Chemical Technology, Prague 1973.
21. Gilbertson T. J., Leete E.: J. Amer. Chem Soc. 89, 7085 (1967).
22. Long K. R., Long R. C. jr, Goldstein J. H.: J. Magn. Res. 8, 207 (1972).
23. Schellenberg K.: Pyridine Nucleotide - Dependent Dehydrogenases, S. 15. Springer, Berlin 1970.
24. Hoffmann R., Heilbronner E., Gleiter R.: J. Amer. Chem. Soc. 92, 706 (1970).
25. Müller C., Schweig A., Vermeer H.: Angew. Chem. 86, 275 (1974).

[^0]: * Part III in the series On Calculations of Biologically Important Compounds; Parts I and II see references ${ }^{1,3}$.
 ** Present address: Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 16610 Prague 6.

